Targeted next-generation sequencing helps to decipher the genetic and phenotypic heterogeneity of hypertrophic cardiomyopathy
نویسندگان
چکیده
Hypertrophic cardiomyopathy (HCM) is mainly associated with myosin, heavy chain 7 (MYH7) and myosin binding protein C, cardiac (MYBPC3) mutations. In order to better explain the clinical and genetic heterogeneity in HCM patients, in this study, we implemented a target-next generation sequencing (NGS) assay. An Ion AmpliSeq™ Custom Panel for the enrichment of 19 genes, of which 9 of these did not encode thick/intermediate and thin myofilament (TTm) proteins and, among them, 3 responsible of HCM phenocopy, was created. Ninety-two DNA samples were analyzed by the Ion Personal Genome Machine: 73 DNA samples (training set), previously genotyped in some of the genes by Sanger sequencing, were used to optimize the NGS strategy, whereas 19 DNA samples (discovery set) allowed the evaluation of NGS performance. In the training set, we identified 72 out of 73 expected mutations and 15 additional mutations: the molecular diagnosis was achieved in one patient with a previously wild-type status and the pre-excitation syndrome was explained in another. In the discovery set, we identified 20 mutations, 5 of which were in genes encoding non-TTm proteins, increasing the diagnostic yield by approximately 20%: a single mutation in genes encoding non-TTm proteins was identified in 2 out of 3 borderline HCM patients, whereas co-occuring mutations in genes encoding TTm and galactosidase alpha (GLA) altered proteins were characterized in a male with HCM and multiorgan dysfunction. Our combined targeted NGS-Sanger sequencing-based strategy allowed the molecular diagnosis of HCM with greater efficiency than using the conventional (Sanger) sequencing alone. Mutant alleles encoding non-TTm proteins may aid in the complete understanding of the genetic and phenotypic heterogeneity of HCM: co-occuring mutations of genes encoding TTm and non-TTm proteins could explain the wide variability of the HCM phenotype, whereas mutations in genes encoding only the non-TTm proteins are identifiable in patients with a milder HCM status.
منابع مشابه
ALPK3 gene mutation in a patient with congenital cardiomyopathy and dysmorphic features
Primary cardiomyopathy is one of the most common inherited cardiac diseases and harbors significant phenotypic and genetic heterogeneity. Because of this, genetic testing has become standard in treatment of this disease group. Indeed, in recent years, next-generation DNA sequencing has found broad applications in medicine, both as a routine diagnostic tool for genetic disorders and as a high-th...
متن کاملTargeted Next-Generation Sequencing Reveals Hot Spots and Doubly Heterozygous Mutations in Chinese Patients with Familial Cardiomyopathy
As a common cardiac disease mainly caused by gene mutations in sarcomeric cytoskeletal, calcium-handling, nuclear envelope, desmosomal, and transcription factor genes, inherited cardiomyopathy is becoming one of the major etiological factors of sudden cardiac death (SCD) and heart failure (HF). This disease is characterized by remarkable genetic heterogeneity, which makes it difficult to screen...
متن کاملNext-generation sequencing identifies pathogenic and modifier mutations in a consanguineous Chinese family with hypertrophic cardiomyopathy
Hypertrophic cardiomyopathy (HCM) is a highly heterogeneous disease displaying considerable interfamilial and intrafamilial phenotypic variation, including disease severity, age of onset, and disease progression. This poorly understood variance raises the possibility of genetic modifier effects, particularly in MYBPC3-associated HCM.In a large consanguineous Chinese HCM family, we identified 8 ...
متن کاملWhole exome sequencing identifies a KCNJ12 mutation as a cause of familial dilated cardiomyopathy
Dilated cardiomyopathy (DCM) is characterized by left ventricular dilation, and is associated with systolic dysfunction and increased action potential duration. Approximately 50% of DCM cases are caused by inherited gene mutations with genetic and phenotypic heterogeneity. Next generation sequencing may be useful in screening unknown mutations in such cases.A family was identified with DCM, in ...
متن کاملTargeted next-generation sequencing for the molecular genetic diagnostics of cardiomyopathies.
BACKGROUND Today, mutations in more than 30 different genes have been found to cause inherited cardiomyopathies, some associated with very poor prognosis. However, because of the genetic heterogeneity and limitations in throughput and scalability of current diagnostic tools up until now, it is hardly possible to genetically characterize patients with cardiomyopathy in a fast, comprehensive, and...
متن کامل